×

semidefinite matrix meaning in Chinese

半定矩阵

Examples

  1. The eigenvalues of positive semidefinite matrices
    半正定矩阵乘积的特征值
  2. The left and right inverse eigenvalue problem for symmetric positive definite and symmetric positive semidefinite matrices on subspace
    子空间上的对称正定及对称半正定阵的左右特征值反问题
  3. In the first part , we shall prove several inequalities involving symmetric positive semidefinite , general m - matrices and inverse m - matrice which are generalization of the classical oppenheim ' s inequality for symmetric positive semidefinite matrices
    第一个部分给出了半正定矩阵,一般的m -矩阵以及逆m -矩阵的一些相关不等式,而这些不等式都是有关半正定矩阵的经典的oppenheim不等式的推广。
  4. The second part of this paper is mainly concerned about an interesting matrix inequality presented in [ 5 ] , which is then generalized in m ~ " under the entry - wise nonnegative ordering . we introduced the concept of sub - kronecker product , and establish an inequality which relates the schur complement of a and b for positive semidefinite matrices a and b . our results improve the related known results obtained by t . l . markham and r . l . smith in 1998 ( see [ 5 ] )
    第二部分研究了文献[ 5 ]中提出的一个有趣的矩阵不等式,并将此不等式在逆m -矩阵中推广,然后引入次kronecker乘法的概念,提出并证明了一个更广泛的不等式,改进了t . l . markham和r . l . smith在[ 5 ]中的有关结果。
  5. In this thesis , we study some open problems and conjectures about the linear complementarity problem . it consists of the next three aspects : firstly , we study murthys " open problem whether the augmented matrix is a q0 - matrix for an arbitary square matrix a , provide an affirmable answer to this problem , obtain the augmented matrix of a sufficient matrix is a sufficient matrix and prove the graves algorithm can be used to solve linear complementarity problem with bisymmetry po - matrices ; secondly , we study murthys " conjecture about positive semidefinite matrices and provide some sufficient conditions such that a matrix is a positive semidefinite matrix , we also study pang ' s conjecture , obtain two conditions when r0 - matrices and q - matrices are equivelent and some properties about e0 q - matrices ; lastly , we give a counterexample to prove danao ' s conjecture that if a is a po - matrix , a e " a p1 * is false , point out some mistakes of murthys in [ 20 ] , obtain when n = 2 or 3 , a e " a p1 * , i . e . the condition of theorem 3 . 2 of [ 25 ] that a p0 can be deleted and obtain a e " a is an almost e - matrix if a is a co - matrix or column sufficient matrix
    本文分为三个部分,主要研究了线性互补问题的几个相关的公开问题以及猜想: ( 1 )研究了murthy等在[ 2 ]中提出的公开问题,即对任意的矩阵a ,其扩充矩阵是否为q _ 0 -矩阵,给出了肯定的回答,得到充分矩阵的扩充矩阵是充分矩阵,并讨论了graves算法,证明了若a是双对称的p _ 0 -矩阵时, lcp ( q , a )可由graves算法给出; ( 2 )研究了murthy等在[ 6 ]中提出关于半正定矩阵的猜想,给出了半正定矩阵的一些充分条件,并研究了pang ~ -猜想,得到了只r _ 0 -矩阵与q -矩阵的二个等价条件,以及e _ 0 q -矩阵的一些性质; ( 3 )研究了danao在[ 25 ]中提出的danao猜想,即,若a为p _ 0 -矩阵,则,我们给出了反例证明了此猜想当n 4时不成立,指出了murthy等在[ 20 ]中的一些错误,得到n = 2 , 3时,即[ 25 ]中定理3 . 2中a p _ 0的条件可以去掉。

Related Words

  1. semidefinite
  2. semidefinite operator
  3. positive semidefinite
  4. semidefinite form
  5. negative semidefinite
  6. semidefinite kernel
  7. negative semidefinite form
  8. positive semidefinite form
  9. positive semidefinite matrix
  10. semidefinite quadratic form
  11. semidefinite integral form
  12. semidefinite kernel
  13. semidefinite operator
  14. semidefinite quadratic form
PC Version

Copyright © 2018 WordTech Co.